Exponential Decay of Reconstruction Error From Binary Measurements of Sparse Signals
نویسندگان
چکیده
منابع مشابه
Fast Reconstruction of SAR Images with Phase Error Using Sparse Representation
In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...
متن کاملHierarchical Reconstruction of Sparse Signals
We consider a family of constrained `p minimizations: min x∈Rn {||x||`p ∣∣ Ax = Ax∗}, where only A, Ax∗ and ||x∗||`0 are known. Such family of problems has been extensively studied in the Compressed Sensing Community and are used to recover sparse signals. We then go through the reasoning on why p = 1 would be the most suitable choice. Due to the possible ill-posedness of the constrained `1 min...
متن کاملSparse Signal Reconstruction from Phase-only Measurements
We demonstrate that the phase of complex linear measurements of signals preserves significant information about the angles between those signals. We provide stable angle embedding guarantees, akin to the restricted isometry property in classical compressive sensing, that characterize how well the angle information is preserved. They also suggest that a number of measurements linear in the spars...
متن کاملRecovery of Clustered Sparse Signals from Compressive Measurements
We introduce a new signal model, called (K,C)-sparse, to capture K-sparse signals in N dimensions whose nonzero coefficients are contained within at most C clusters, with C < K ≪ N . In contrast to the existing work in the sparse approximation and compressive sensing literature on block sparsity, no prior knowledge of the locations and sizes of the clusters is assumed. We prove that O (K + C lo...
متن کاملStochastic Recovery Of Sparse Signals From Random Measurements
Sparse signal recovery from a small number of random measurements is a well known NP-hard to solve combinatorial optimization problem, with important applications in signal and image processing. The standard approach to the sparse signal recovery problem is based on the basis pursuit method. This approach requires the solution of a large convex optimization problem, and therefore suffers from h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2017
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2017.2688381